首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11655篇
  免费   1107篇
  国内免费   9篇
电工技术   75篇
综合类   8篇
化学工业   4228篇
金属工艺   133篇
机械仪表   295篇
建筑科学   455篇
矿业工程   16篇
能源动力   319篇
轻工业   3135篇
水利工程   109篇
石油天然气   69篇
无线电   468篇
一般工业技术   1688篇
冶金工业   533篇
原子能技术   35篇
自动化技术   1205篇
  2024年   29篇
  2023年   125篇
  2022年   142篇
  2021年   1016篇
  2020年   413篇
  2019年   422篇
  2018年   473篇
  2017年   497篇
  2016年   543篇
  2015年   442篇
  2014年   578篇
  2013年   868篇
  2012年   828篇
  2011年   938篇
  2010年   717篇
  2009年   666篇
  2008年   610篇
  2007年   573篇
  2006年   443篇
  2005年   332篇
  2004年   280篇
  2003年   254篇
  2002年   235篇
  2001年   142篇
  2000年   95篇
  1999年   127篇
  1998年   109篇
  1997年   107篇
  1996年   75篇
  1995年   69篇
  1994年   57篇
  1993年   58篇
  1992年   61篇
  1991年   46篇
  1990年   35篇
  1989年   34篇
  1988年   31篇
  1987年   28篇
  1986年   38篇
  1985年   33篇
  1984年   26篇
  1983年   22篇
  1982年   15篇
  1981年   17篇
  1980年   19篇
  1979年   19篇
  1978年   20篇
  1977年   13篇
  1976年   7篇
  1975年   11篇
排序方式: 共有10000条查询结果,搜索用时 609 毫秒
121.
122.
In spite of the huge progress in the treatment of diabetes mellitus, we are still in the situation that both pregestational (PGDM) and gestational diabetes (GDM) impose an additional risk to the embryo, fetus, and course of pregnancy. PGDM may increase the rate of congenital malformations, especially cardiac, nervous system, musculoskeletal system, and limbs. PGDM may interfere with fetal growth, often causing macrosomia, but in the presence of severe maternal complications, especially nephropathy, it may inhibit fetal growth. PGDM may also induce a variety of perinatal complications such as stillbirth and perinatal death, cardiomyopathy, respiratory morbidity, and perinatal asphyxia. GDM that generally develops in the second half of pregnancy induces similar but generally less severe complications. Their severity is higher with earlier onset of GDM and inversely correlated with the degree of glycemic control. Early initiation of GDM might even cause some increase in the rate of congenital malformations. Both PGDM and GDM may cause various motor and behavioral neurodevelopmental problems, including an increased incidence of attention deficit hyperactivity disorder (ADHD) and autism spectrum disorder (ASD). Most complications are reduced in incidence and severity with the improvement in diabetic control. Mechanisms of diabetic-induced damage in pregnancy are related to maternal and fetal hyperglycemia, enhanced oxidative stress, epigenetic changes, and other, less defined, pathogenic mechanisms.  相似文献   
123.
Medullary thyroid carcinoma (MTC) is a tumor deriving from the thyroid C cells. Vandetanib (VAN) and cabozantinib (CAB) are two tyrosine kinase inhibitors targeting REarranged during Transfection (RET) and other kinase receptors and are approved for the treatment of advanced MTC. We aim to compare the in vitro and in vivo anti-tumor activity of VAN and CAB in MTC. The effects of VAN and CAB on viability, cell cycle, and apoptosis of TT and MZ-CRC-1 cells are evaluated in vitro using an MTT assay, DNA flow cytometry with propidium iodide, and Annexin V-FITC/propidium iodide staining, respectively. In vivo, the anti-angiogenic potential of VAN and CAB is evaluated in Tg(fli1a:EGFP)y1 transgenic fluorescent zebrafish embryos by analyzing the effects on the physiological development of the sub-intestinal vein plexus and the tumor-induced angiogenesis after TT and MZ-CRC-1 xenotransplantation. VAN and CAB exert comparable effects on TT and MZ-CRC-1 viability inhibition and cell cycle perturbation, and stimulated apoptosis with a prominent effect by VAN in MZ-CRC-1 and CAB in TT cells. Regarding zebrafish, both drugs inhibit angiogenesis in a dose-dependent manner, in particular CAB shows a more potent anti-angiogenic activity than VAN. To conclude, although VAN and CAB show comparable antiproliferative effects in MTC, the anti-angiogenic activity of CAB appears to be more relevant.  相似文献   
124.
The most known effects of endogenous Cushing’s syndrome are the phenotypic changes and metabolic consequences. However, hypercortisolism can exert important effects on other endocrine axes. The hypothalamus–pituitary–thyroid axis activity can be impaired by the inappropriate cortisol secretion, which determinates the clinical and biochemical features of the “central hypothyroidism”. These findings have been confirmed by several clinical studies, which also showed that the cure of hypercortisolism can determine the recovery of normal hypothalamus–pituitary–thyroid axis activity. During active Cushing’s syndrome, the “immunological tolerance” guaranteed by the hypercortisolism can mask, in predisposed patients, the development of autoimmune thyroid diseases, which increases in prevalence after the resolution of hypercortisolism. However, the immunological mechanism is not the only factor that contributes to this phenomenon, which probably includes also deiodinase-impaired activity. Cushing’s syndrome can also have an indirect impact on thyroid function, considering that some drugs used for the medical control of hypercortisolism are associated with alterations in the thyroid function test. These considerations suggest the utility to check the thyroid function in Cushing’s syndrome patients, both during the active disease and after its remission.  相似文献   
125.
126.
Despite the existing arsenal of anti-cancer drugs, 10 million people die each year worldwide due to cancers; this highlights the need to discover new therapies based on innovative modes of action against these pathologies. Current chemotherapies are based on the use of cytotoxic agents, targeted drugs, monoclonal antibodies or immunotherapies that are able to reduce or stop the proliferation of cancer cells. However, tumor eradication is often hampered by the presence of resistant cells called cancer stem-like cells or cancer stem cells (CSCs). Several strategies have been proposed to specifically target CSCs such as the use of CSC-specific antibodies, small molecules able to target CSC signaling pathways or drugs able to induce CSC differentiation rendering them sensitive to classical chemotherapy. These latter compounds are the focus of the present review, which aims to report recent advances in anticancer-differentiation strategies. This therapeutic approach was shown to be particularly promising for eradicating tumors in which CSCs are the main reason for therapeutic failure. This general view of the chemistry and mechanism of action of compounds inducing the differentiation of CSCs could be particularly useful for a broad range of researchers working in the field of anticancer therapies as the combination of compounds that induce differentiation with classical chemotherapy could represent a successful approach for future therapeutic applications.  相似文献   
127.
Under the hypothesis that cardioprotective agents might benefit from synergism between antiarrhythmic activity and antioxidant properties, a small series of mexiletine analogues were coupled with the 2,2,5,5-tetramethylpyrroline moiety, known for its antioxidant effect, in order to obtain dual-acting drugs potentially useful in the protection of the heart against post-ischemic reperfusion injury. The pyrroline derivatives reported herein were found to be more potent as antiarrhythmic agents than mexiletine and displayed antioxidant activity. The most interesting tetramethylpyrroline congener, a tert-butyl-substituted analogue, was at least 100 times more active as an antiarrhythmic than mexiletine.  相似文献   
128.
The development of potent antitumor agents with a low toxicological profile against healthy cells is still one of the greatest challenges facing medicinal chemistry. In this context, the “mutual prodrug” approach has emerged as a potential tool to overcome undesirable physicochemical features and mitigate the side effects of approved drugs. Among broad-spectrum chemotherapeutics available for clinical use today, 5-fluorouracil (5-FU) is one of the most representative, also included in the World Health Organization model list of essential medicines. Unfortunately, severe side effects and drug resistance phenomena are still the primary limits and drawbacks in its clinical use. This review describes the progress made over the last ten years in developing 5-FU-based mutual prodrugs to improve the therapeutic profile and achieve targeted delivery to cancer tissues.  相似文献   
129.
Despite the strong evidence for the immunomodulatory activity of mesenchymal stromal cells (MSCs), clinical trials have so far failed to clearly show benefit, likely reflecting methodological shortcomings and lack of standardization. MSC-mediated tissue repair is commonly believed to occur in a paracrine manner, and it has been stated that extracellular vesicles (EVs) secreted by MSCs (EVMSC) are able to recapitulate the immunosuppressive properties of parental cells. As a next step, clinical trials to corroborate preclinical studies should be performed. However, effective dose in large mammals, including humans, is quite high and EVs industrial production is hindered by the proliferative senescence that affects MSCs during massive cell expansion. We generated a genetically modified MSC cell line overexpressing hypoxia-inducible factor 1-alpha and telomerase to increase the therapeutic potency of EVMSC and facilitate their large-scale production. We also developed a cytokine-based preconditioning culture medium to prime the immunomodulatory response of secreted EVs (EVMSC-T-HIFc). We tested the efficacy of this system in vitro and in a delayed-type hypersensitivity mouse model. MSC-T with an HIF-1α-GFP lentiviral vector (MSC-T-HIF) can be effectively expanded to obtain large amounts of EVs without major changes in cell phenotype and EVs composition. EVMSC-T-HIFc suppressed the proliferation of activated T-cells more effectively than did EVs from unmodified MSC in vitro, and significantly blunted the ear-swelling response in vivo by inhibiting cell infiltration and improving tissue integrity. We have developed a long-lived EV source that secretes high quantities of immunosuppressive EVs, facilitating a more standard and cost-effective therapeutic product.  相似文献   
130.
As widely acknowledged, 40–50% of all melanoma patients harbour an activating BRAF mutation (mostly BRAF V600E). The identification of the RAS–RAF–MEK–ERK (MAP kinase) signalling pathway and its targeting has represented a valuable milestone for the advanced and, more recently, for the completely resected stage III and IV melanoma therapy management. However, despite progress in BRAF-mutant melanoma treatment, the two different approaches approved so far for metastatic disease, immunotherapy and BRAF+MEK inhibitors, allow a 5-year survival of no more than 60%, and most patients relapse during treatment due to acquired mechanisms of resistance. Deep insight into BRAF gene biology is fundamental to describe the acquired resistance mechanisms (primary and secondary) and to understand the molecular pathways that are now being investigated in preclinical and clinical studies with the aim of improving outcomes in BRAF-mutant patients.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号